
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-2011 

Implementation of hidden semi-Markov models Implementation of hidden semi-Markov models 

Nagendra Abhinav Dasu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Applied Mathematics Commons, and the Theory and Algorithms Commons 

Repository Citation Repository Citation 
Dasu, Nagendra Abhinav, "Implementation of hidden semi-Markov models" (2011). UNLV Theses, 
Dissertations, Professional Papers, and Capstones. 997. 
https://digitalscholarship.unlv.edu/thesesdissertations/997 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/997?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


www.manaraa.com

 

 

IMPLEMENTATION OF HIDDEN SEMI-MARKOV MODELS 

 

 

by 

 

Nagendra Abhinav Dasu 

 

 

Bachelor of Technology in Information Technology 

Jawaharlal Nehru Technological University, India 
May 2009 

 

 

A thesis submitted in partial fulfillment 
of the requirements for the 

 

 

Master of Science Degree in Computer Science 
School of Computer Science 

Howard R. Hughes College of Engineering 
 

 

 

Graduate College 
University of Nevada, Las Vegas 

May 2011 

 



www.manaraa.com

 

 

 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
Copyright by Nagendra Abhinav Dasu 2011 

All Rights Reserved 

 
 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 ii 

 
 

 

THE GRADUATE COLLEGE 
 

 
We recommend the thesis prepared under our supervision by 
 

 

Nagendra Abhinav Dasu 
 
 
entitled 

 
 
Implementation of Hidden Semi-Markov Models 
 
 
be accepted in partial fulfillment of the requirements for the degree of 
 

 

Master of Science in Computer Science 
School of Computer Science 

 
 

Kazem Taghva, Committee Chair 
 
Ajoy K. Datta, Committee Member 

 
Laxmi P. Gewali, Committee Member 

 
Muthukumar Venkatesan, Graduate Faculty Representative 
 

 
 
Ronald Smith, Ph. D., Vice President for Research and Graduate Studies 

and Dean of the Graduate College 
 

 
May 2011 
 

 
 



www.manaraa.com

 

 iii 

ABSTRACT 

Implementation of Hidden Semi-Markov Models 

by 

Dasu Nagendra Abhinav 

Dr. Kazem Taghva, Examination Committee Chair  
Professor of Computer Science  

University of Nevada, Las Vegas 
 

 One of the most frequently used concepts applied to a variety of 

engineering and scientific studies over the recent years is that of a 

Hidden Markov Model (HMM). The Hidden semi-Markov model (HsMM) is 

contrived in such a way that it does not make any premise of constant or 

geometric distributions of a state duration. In other words, it allows the 

stochastic process to be a semi-Markov chain.  Each state can have a 

collection of observations and the duration of each state is a variable. 

This allows the HsMM to be used extensively over a range of applications. 

Some of the most prominent work is done in speech recognition, gene 

prediction, and character recognition.  

 This thesis deals with the general structure and modeling of 

Hidden semi-Markov models and their implementations. It will further 

show the details of evaluation, decoding, and training with a running 

example. 

 

 



www.manaraa.com

 

 iv 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my gratitude to each and 

everyone who helped me grow as a student and as a person all through 

this spell of my life.  

It gives me great pleasure in acknowledging the support and help of 

my committee chair, Dr. Kazem Taghva for all his guidance through 

every stage of this thesis research. I attribute the level of my Masters 

degree to his encouragement and effort and without him this thesis 

would not have been completed. 

I would like to thank my committee members, Dr. Ajoy K. Datta and 

Dr. Laxmi Gewali, whose work demonstrated to me the importance of 

simplicity and values.  It was a pleasure taking courses offered by them 

which were not only interesting but offered a lot of challenges. Special 

thanks to Dr. Venkatesan Muthukumar for accepting my request and 

being a part of my committee. I would also like to thank all the 

professors of the CS department that I have worked with and also offer 

my special thanks to Mr. Mario and Mrs. Sharon of the CS office for 

guiding me in every step.  

This thesis is dedicated to my parents who have given me the 

opportunity of an education from the best institutions and support 

throughout my life.  I have always believed in my family being my biggest 

strength and henceforth I would like to thank all my family members 

especially my brother and my cousins. Finally, I would like express my 



www.manaraa.com

 

 v 

love to my friends for their constant understanding and backing me in 

the toughest of times. I owe a lot to each and every one of them.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 vi 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................... iii 

ACKNOWLEDGEMENTS .......................................................................iiv 

LIST OF FIGURES ................................................................................vii 

CHAPTER 1  INTRODUCTION ................................................................ 1 

1.1 Theoretical Background of a HMM ................................................ 1 

1.2 Need of the HsMM over an HMM ................................................... 1 

1.3 General Structure of HsMM .......................................................... 2 

1.4 Application Areas of HsMM ........................................................... 4 

1.5 Common Issues with Semi-Markov Model ..................................... 4 

CHAPTER 2  HsMM: ELEMENTS AND RELATED PROBLEMS ................ 6 

2.1 Model Parameters ......................................................................... 6 

2.2 Three Basic Problems of HMM ...................................................... 7 

2.3 Forward Algorithm ........................................................................ 8 

2.4 Backward Algorithm ................................................................... 10 

2.5 Viterbi Algorithm ........................................................................ 12 

2.6 Maximum Likelihood  Estimation................................................ 16 

2.7 Baum – Welch Algorithm ............................................................ 17 

CHAPTER 3  IMPLEMENTATIONAL DETAILS ....................................... 22 

3.1 Changes from the Traditional HMM ............................................ 22 

3.3 Smoothing .................................................................................. 37 

CHAPTER 4  RESULTS EVALUATION .................................................. 41 

4.1 Results ....................................................................................... 41 

4.2 Advantages Over the Traditional HMM ........................................ 51 

CHAPTER 5  CONCLUSION AND FURTURE SCOPE ............................. 53 

BIBLOGRAPHY .................................................................................... 55 

VITA .................................................................................................... 59 

 

 

 

 



www.manaraa.com

 

 vii 

LIST OF FIGURES 

Figure 1:   General Model of HsMM ........................................................ 3 

Figure 2:   Example of State Transitions in HsMM .................................. 3 

Figure 3:   Operations Required for Forward Variable Generation ........... 9 

Figure 4:   Forward Variable Generation for N States for Time T ............. 9 

Figure 5:   Operations Required for Backward Variable Generation ...... 11 

Figure 6:   Backward and Forward Variable Generation in a System .... 11 

Figure 7:   Example Structure of a Trellis Diagram ............................... 15 

Figure 8:   Example of Backtracking Using the Trellis Diagram ............ 15 

Figure 9:   Duration of Each State in a HsMM ...................................... 23 

Figure 10: Sample Model File for HsMM ............................................... 25 

Figure 11: Tagged Training Data Set for an HsMM ............................... 26 

Figure 12: Untagged Training Data Set for an HsMM ........................... 27 

Figure 13: Screenshot of the Project Directory and its Compilation....... 42 

Figure 14: Screenshot Showing the Input Files for Decode Algorithm ... 43 

Figure 15: Execution of Decode Command and the Resulting File ........ 44 

Figure 16: Alternate Input Files for the Decode Command.................... 45 

Figure 17: Execution and the Result File for Alternate Inputs .............. 45 

Figure 18: Execution of the Count Procedure ....................................... 47 

Figure 19: Resulting Model File After Training Using Count ................. 48 

Figure 20: Result File Using Viterbi on Trained Model Using Count ...... 49 

Figure 21: The Final Likelihood Using Baum Welch Algorithm ............. 50 

Figure 22: Result File on the Trained Model Using Baum Welch ........... 51 

 

 

../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915236
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915237
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915238
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915239
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915240
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915244
../../../../Users/nagendra.AD/Desktop/fulldemo2.doc#_Toc290915245


www.manaraa.com

 

 1 

CHAPTER 1 

INTRODUCTION 

1.1 Theoretical Background of a HMM  

Hidden Markov Models (HMMs) is a widely used statistical model. It is 

modeled by a Markov process in which the states are hidden, meaning 

the state sequence is not observable. The markov chain which forms the 

structure of this model is discrete in time.  

The definition of a HMM contains five variables namely, (S,V,∏,A,B). 

Here S is set of N finite states, V is the vocabulary set. ∏ indicates the 

initial state probabilities, A is the state transition probabilities while B is 

the emission probabilities.   

HMMs are being used from many decades in the domain of pattern 

recognition, covering speech and handwriting recognition. In spite of its 

range of applications, HMM has the limitation of working only with 

discrete outputs. Consequently, HMM has been extended into various 

models generating continuous outputs or Gaussian outputs or even the 

mixtures of Gaussian outputs. 

         

1.2 Need of the HsMM over an HMM  

Among many extensions of the traditional HMM, Hidden semi-Markov 

models is the most frequently used. HsMM, contrary to the simplicity of 

HMM, allows for general length distributions not solely geometric. This is 



www.manaraa.com

 

 2 

the main advantage. We can classify the HsMM into a class of models in 

which the state of the hidden Markov process influences the distribution 

of the observation sequence.  HsMM is being extensively applied in the 

field of automatic speech recognition.  On a whole, this theory and its 

applications are rapidly expanding to many other areas.   

The proliferation of the theory, and its subsequent use, can be 

accredited to the model‟s [3]:  

 Likelihood; that takes linear time to compute. 

 Interpretability; which is shown in a range of cases  

   Availability of conditional distributions  

   Usability; for, even in cases missing a few observations it can be 

handled with minimal effort 

 

1.3 General Structure of HsMM 

As mentioned before, the HsMM‟s capacity extends beyond that of the 

HMM.  It allows for every hidden state to be a semi-Markov chain while 

also introducing the concept of state duration. This means that, unlike in 

HMM where a state can emit one observation per state, a state in HsMM 

can emit a sequence of characters. The length of the observation 

sequence for each state is determined by the duration variable of each 

state. Consequently, in addition to the standard notation of a HMM, a 

state duration variable is added for the HsMM.  This is an integer 

variable and takes the value from the set {1, 2....D}, where D is the 



www.manaraa.com

 

 3 

maximum duration allowed for a single state.    

Below is a figure depicting the general HsMM structure [1].  The initial 

state and its duration are selected according to the initial transition 

probabilities. In this case, the first state produces two observations 

hence the duration equals two and transitions into the second state. The 

second state then produces an observation sequence length of four. This 

can be seen for the remaining states till time (T). 

 

          

 

Figure 1: General Model of HsMM 

                                

                       

 

Figure 2: Example of State Transitions in HsMM 



www.manaraa.com

 

 4 

Figure 2 shows a HsMM with duration Qd
t for each state Qt [4]. We 

can clearly see from the above figure that a state generates the 

observation sequence (here, Yi for a state i) and after it has completed its 

duration in that state, it transitions into the next state.   

 

1.4 Application Areas of HsMM  

The applications of HsMM are varied and far-reaching. Approximately 

thirty areas of interest are working with various tools based on HsMM.   

Examples include:  human activity recognition, printed text recognition, 

recognition of human genes, MRI brain mapping, language identification, 

speech synthesis, remote sensing, image segmentation, handwriting 

recognition, Internet traffic modeling, classification of music, event 

recognition in videos, mobility tracking in cellular networks, symbolic 

plan recognition, etc. Among these, the major applications include 

speech synthesis, handwriting recognition, anomaly detection and MRI 

brain mapping. A complete list of the applications is given in [1].  

 

1.5 Common Issues with Semi-Markov Model 

HsMM has its own share of issues and disadvantages; for example: 

  To reduce the complexity of computation, it makes a few significant 

assumptions e.g., the Markovian assumption and the Gaussian 

mixture assumption. The Markov assumption allows the case 

where in the current state is dependent only on its immediate 



www.manaraa.com

 

 5 

previous state resulting in a First order HsMM. The Gaussian 

mixture assumption allows the distribution to be calculated by 

picking a random component.    

   HsMM prerequisites a large number of parameters for its efficient 

working. 

   Consequently, the efficiency of HsMM is contingent upon large 

data sets to perfectly train the system. 

   Lastly, implementation involves several additions to the original 

algorithm. 

  

An overview of HsMMs is presented in this paper. It includes 

modeling, estimation and implementation.  Specifically, the paper first 

describes the modified forward and backward algorithms used, along 

with the details on Viterbi and Baum-Welch algorithms. Secondly, the 

paper provides the implementation details and its corresponding results. 

Finally, we try to analyze the results obtained and draw suitable 

conclusions from them.  

 

 

 

 



www.manaraa.com

 

 6 

CHAPTER 2 

HsMM: ELEMENTS AND RELATED PROBLEMS 

2.1 Model Parameters 

As we have described before, HsMM has an extra state duration variable 

along with the traditional HMM variables. Formally, we define an HsMM 

as a 6-tuple (S, V, Π, A, B, Pd). In this paper, the model is denoted as λ = 

(Π, A, B, Pd) to denote all the parameters.  

We describe the above parameters below [5],  

 The state transition probability distribution A defined as, 

 aij = Pr{qj at t+1 | qi at t }  

 The emission probability distribution in state i; B   

Bij(Ot) = P(y(St)| St= q, Lt= d). Here, y(St) is the sequence of symbols 

emitted by the general state St. The length of the sequence is given 

as „d‟.    

 The initial state distribution Π = {Πi} where 

          Πi= Pr{i1=qi} 

 The duration probability Pd defined as 

 X= p(d | qi) 

          P(d|qi) = Pr{duration(qi)=d} 

Let us now see a typical working of a HsMM. It shows the general flow of 

a standard model [5]. 

 An initial state is chosen referring to the distribution given in Π. 



www.manaraa.com

 

 7 

 An observation sequence length d1 is chosen from Pd.  

 The sequence o1o2...od1 is emitted according to the value bi1 in B. 

 The next state i2 is chosen from A, the transition matrix.  

 The above process is repeated for i2 and all the remaining states. 

 

2.2 Three Basic Problems of HMM 

There are three basic problems that must be addressed in order for the 

HsMM to be applicable in any of the research areas. These are commonly 

referred by the names: 

 Observation Probability Problem   

 Decoding Problem 

 Training Problem 

 We describe these problems in brief below [5].  

Observation Probability Problem is an evaluation problem. In simple 

words, given the HsMM model parameters and a set of observations, we 

have to evaluate the probability of the HsMM producing the observations.  

This is useful to pick a model which appropriately matches our 

observations. Forward algorithm is employed to solve this problem. This 

is clearly explained in the sections 2.3.  

Decoding Problem as the name suggests, it tries to recognize the 

hidden states. It means, given an observation sequence we try to find the 

best possible sequence of states that optimizes the observations. This is 

used often in many real world applications such as, state sequences in 



www.manaraa.com

 

 8 

speech recognition or to learn the structure of the HsMM itself. The most 

popular recognition algorithm is the Viterbi algorithm. It is also referred 

as a Decoding algorithm. It is presented in section 2.5.  

Training Problem is used mainly to optimize our HsMM parameters. 

This is done so as to best match the given sequence of emission symbols. 

For this, we 'train' our model with a set of observations referred as a 

'training set'. The training process is an important part of development as 

this phase determines the efficiency of the system. Large datasets with 

suitable data can optimize the parameters and in turn create adept 

systems. Training is typically done in two ways. A supervised way which 

trains the model using tagged sequences specifying the states and its 

corresponding emissions. This is called the Maximum Likelihood 

Estimation algorithm.  The second way is an unsupervised method where 

a recursive Baum – Welch algorithm is made used. We will describe both 

these methods in sections 2.6 and 2.7 

 

2.3 Forward Algorithm 

The Forward procedure is an easy way to solve the observation 

probability problem. We proceed to this solution by first defining a 

forward variable, αt(i) = P(o1, ..., ot, qt = si|λ). To put it in simple words, it 

is the probability of partial observation sequence o1o2 … till ot was 

generated and we reach state state si at time t, given our model λ. These 

values are computed recursively over time T.  



www.manaraa.com

 

 9 

The figure below shows the sequence of operations done in order to 

generate a forward variable value [7]. 

 

                                 

 

 

 

Figure 3: Operations Required for Forward Variable Generation 

  

This is another illustration displaying the computations when given 

multiple states and observations. In this figure, there are 'T‟ observations 

and 'N' states. A variable at time ‟t‟ in every state 'i' is dependent on all 

the previous forward variables at time‟t-1' [7].  

 

        

 

 

           

Figure 4: Forward Variable Generation for N States for Time T 



www.manaraa.com

 

 10 

The process of calculating this variable is recursive and hence has three 

steps. 

          i)  Initialization: 

  α1(j) = π(j)bj(O1),   1  ≤ j ≤ N 

          ii) Induction:    

     αt(j,d) = P(yt-d+1:t|j,d)P(d|j)∑A(i,j)(∑αt-d(i,di )) 

     iii) Termination: 

       P(O|  λ ) = N∑i=1 αT(i,d')  

The initialization is the product of the probability of state Sj being the 

initial state with the emission probability. The induction takes place until 

the end of time sequence T. The forward variable is computed iteratively 

at each instant for each state. This value depends on the previous α 

value. Finally, the sum of terminal forward variables gives the value of P 

(O| λ) [4]. 

 

2.4 Backward Algorithm 

The first problem of Observation probability is solved by the forward 

variable since we manage to compute P(O|λ). But, in order to solve the 

second problem of decoding, we need to have a second variable called the 

Backward variable- denoted as β.   

This value is defined as, βt(i) = p(ot+1, ..., oT |qt = si, λ). It is defined as 

the probability of generating the partial sequence from t+1 to T and given 

the HsMM model and the state at time ‟t‟ being si [7].  



www.manaraa.com

 

 11 

This following figure better illustrates this concept. It gives the set of 

computations required for calculating a single backward variable βt(i) [7].  

    

                                 
)(it )(1 jt 

 

 

Figure 5: Operations Required for Backward Variable Generation 

  

The following shows the set of computations that are necessary in when 

the system being in state 'j' at 't+d' and in the state 'i' at 't' [3]. 

   

)(it )( jt

 

 

Figure 6: Backward and Forward Variable Generation in a System 



www.manaraa.com

 

 12 

Similar to the forward variable, this is also a recursive process.  

i) Initialization: 

  βT (i) = 1,  1 ≤ i ≤ N 

ii) Induction: 

  βt(i,d') = ∑∑βt+d(j,d)P(yt+1:t+d|j,d)P(j|i)P(d|j) 

As shown in Figure 5, βT (i) is defined as 1 for all the N states. From 

the induction formula we can infer that we have to consider all the states 

Si at time t+d, all the transitions from Si to Sj and the sequence of 

observations in state j at t+d in order to compute the probability of being 

in state Si at t. All these calculations are clearly explained and derived in 

[4]. The total computational complexity of forward- backward algorithm 

is    O (N2LT) where L is the total sum of durations for all the N states.   

 

2.5 Viterbi Algorithm 

The Decoding problem is solved using the Viterbi algorithm. It is one of 

the most frequently used methodologies in recent times. This is a 

dynamic algorithm that computes, for a given sequence of emissions the 

most likely state transition path.  In essence, this is quite similar to the 

'Forward algorithm'. The slight difference being that we use 'max' rather 

than a summation over all the paths available to arrive at a particular 

state.   

Let the set of states be Q = {q1, q2, q3...qt} and the given observation 

sequence be O = {O1, O2, O3, ….Ot}.  



www.manaraa.com

 

 13 

The algorithm calculates the following quantity [7]:  

 δt(i) = max q1,q2,...qt-1 P(q1q2....qt=i, O1O2....Ot | λ)   

The above variable stores the path with the highest probability at time 

t of ending in state Si. Along with this, we also need another variable 

Ψt(i). It allows us to dynamically store the 'best path' to the state Si at the 

instant 't' [8]. Hence, the probable best path is calculated for each of the 

states before reaching the final state. Also, the path reached is 

comprehensive at each and every state. 

Similar to the Viterbi used in traditional HMM, HsMM also uses 

dynamic programming to compute the best path. At each time instant 't', 

the algorithm computes the forward variable for each state 'i'.  

  α(j)Tt = max i=1 N max d=1 D αt-d(i)aijP(d | j) Π j= i-d+1 bj(oi) 

 The sequence of steps for the modified Viterbi algorithm for Hidden 

semi-Markov model is given below [3]:  

  STEP 0 : Store the indexes: 

 States: 1 ≤  i,j ≤ N 

 Time:  0 ≤ t ≤ T 

 Duration:   0 ≤ d ≤ D    

  STEP 1 :  Initialization 

  At time t = 0 

 αo(i)=  π(i)bi(O1),   1  ≤ i ≤ N 

 STEP 2:  Iterations 

 From t >1 and for 1 ≤ j ≤ N 



www.manaraa.com

 

 14 

 Do  

 for t = 1 to T do  

 for j = 1 to N do 

  α t (j) = max i=1 N max d=1 D αt-d(i)aijP(d | j) Π j= i-d+1 bj(oi) 

 end for 

 end for 

 Step 3 : Backtracking  

The state 'i' and duration ‟d‟ which gives the best path by optimizing 

the above equation are stored in the variables δt(i) and Ψt(i).  The 

variable Ψt(i) is mainly used to backtrack the best path from the 

final state. 

 

 The Trellis Diagram is a powerful tool to better comprehend the idea 

of backtracking and identifying various paths discovered in Viterbi [8]. 

Every column in this diagram corresponds to an instant of time. There 

are N numbers of rows, N being the number of states. Transitions among 

states connect a column with its adjacent. At each instant, every state is 

indicated with its corresponding emission probabilities. Figure 7, clearly 

explains a trellis diagram.  



www.manaraa.com

 

 15 

 

 

Figure 7: Example Structure of a Trellis Diagram 

        

In the above figure, the sequence of symbols for every instant 't' is 

given below. There are 3 states assumed with given transition and 

emission probabilities.  After running the algorithm we can use the trellis 

diagram to trace back the path using the two variables δt(i) and Ψt(i) as 

shown in Figure 8 . 

 

                       

 

Figure 8: Example of Backtracking Using the Trellis Diagram 



www.manaraa.com

 

 16 

The above illustrates an example with 3 states and a sequence of 

length 5. As we can see the path with highest δt(i) is identified and its 

corresponding Ψt(i) is used to backtrack through the nodes.   

It takes O(NDi) time to compute the forward variable for a single 

iteration, where Di is the duration allowed for that state. Hence, the total 

complexity of the algorithm is O(N2LT), where T is the total time and L is 

the sum of durations of N states.  

  

2.6 Maximum Likelihood Estimation 

The maximum likelihood estimation technique is a popular statistical 

method often used to estimate the model parameters which maximize the 

likelihood. In other words, this method comes up with a set of values 

that are most likely to produce the probability distribution derived from 

the observed data [15].  MLE is widely used because of the following 

reasons [14]: 

 It is simple to compute. 

 It is invariant if the parameters are changed. 

 MLE implements the concept of likelihood. 

 With enough data, it is mostly very efficient.     

   

Given a tagged sequence of data, containing both the symbols emitted 

along with their corresponding states, the MLE comes up with the 

following calculations to determine the model parameters [16]. 



www.manaraa.com

 

 17 

 Transition Probability: Let the two states be Si and Sj and we want to 

make a transition from Si to Sj. Then, 

          Number of transitions from Si to Sj 

         P(Si, Sj) =      ____________________________________ 

                      Total number of transitions out of Si 

 

 Emission Probability: To calculate the probability of emitting symbol 

w from state s, we use 

        Number of times symbol w is emitted at state s 
         P(w|s) =   _______________________________________________ 

                          Total number of symbols emitted from state s 
 

 Initial State Probability: The formula to calculate the probability of a 

state s being the starting state is ,        

                         Number of times S emits the first symbol 

  P(s,1) =  _____________________________________________________ 
                Total number of first symbol emissions by all the states 

  

Hence, this is a simple counting technique that helps in improving the 

model parameters. But this algorithm is not really recommended for 

large data or in the cases where it is hard to tag the data. Hence, we next 

learn about an unsupervised technique which though complicated, is 

effective in every case.  

  

2.7 Baum – Welch Algorithm 

The most complicated and by far the most essential algorithm needed to 

develop an efficient HsMM is the Baum – Welch algorithm. This 

algorithm is an unsupervised training algorithm and solves the Training 



www.manaraa.com

 

 18 

problem.  It was invented by Leonard E.Baum and Lloyd R Welch [9]. 

This comes under the class of Estimation Maximization algorithms.  

The algorithm works in two stages. Estimate or initialize the 

parameters of HsMM and then maximize them. We will now discuss them 

in detail.  

Estimation: We start off with random guesses for the parameters of 

the model. Values for the transition matrix, the emission probabilities 

and the initial state probabilities along with those of state duration 

probabilities are assigned randomly generated values.  

Maximization: This process is iterative. After the initial values are 

assigned the algorithm enters into a loop where it uses the provided 

training data. Based on the tags and related probabilities, new values for 

the model parameters are evaluated and assigned.  Hence, after every 

iteration we get a model which better matches the given data. The 

iterations continue until we reach a stage where the improvement in the 

parameters is smaller than an assigned threshold.  

In the above manner, Baum – Welch algorithm helps to get an 

optimized HsMM model. We now define formally the algorithm [10].  

 Algorithm: Baum Welch   

 INPUT: 

  The observation sequence: O1, O2, … OT. 

 INTIALIZATION: 

 Assign random values to HsMM model parameters: λ=   (A,B.D,Π). 



www.manaraa.com

 

 19 

 MAXIMIZATION:   

   Repeat  

  { 

     λ = λ‟; Π = Π‟ ; 

  For each observation sequence at every time instant 't'.  

   {   

  Calculate all the probable paths to that state. 

  Calculate α(t,i) and β(t,i) using Forward – Backward algorithms. 

  Calculate the amount of change that occurred on the transition   

  matrix. 

  Calculate the amount of change that occurred on the emission  

  matrix. 

  } 

  Calculate the new model parameters.  

  }  

 Until (the change in the parameter values is less than the                

predefined threshold) 

 

We use a set of formulas to compute and update the model 

parameters. Though we can express them using the forward and 

backward variables along with the current parameter values, the 

computation becomes far simpler with the use of two new variables.  

 γ t(i) is defined as the probability of being in state Si for a given set of 



www.manaraa.com

 

 20 

emission symbols at time t. 

 ξ t(i,j) is the probability of a transition occurring between states Si 

and Sj at time t for the given model and the set of observations.   

The formal definitions of the above variables are given below [3].  

  

                    αt(i)βt(i) 
                            γ t(i)  =               ____________                                         

                                               Σj=1 N αt(i)βt(i) 
    

   ξ t(i,j) =    Σt=1 T αt(i) aij  Σd=1 D P(d | j) bj(O t+1 t')βt' (j) 

 

Following are the Parameter re-estimation formulas or the HsMM [3]: 

 Initial State Distribution Estimation: 

The probability of a state 'i' being the starting state for a given 

observation set O.        

     Πi [ Σ d=1 D βd(i) P( d |i) bj (O d1 ) ] 
                      Π'i =     ______________________________________ 

          P( O | λ )   
  

 State Transition Probabilities Estimation:  

The probability of a state 'i' moving to the next state 'j' after its 

duration di. 

                     Σ t=1 T ξ t t' (i,j) 
              a'ij =     _______________________ 

                            Σt=1 T Σi=1 N Σj=1 N ξt t' (i,j) 
 

 Emission Probabilities Estimation:  

It is the probability of the segment of observations that occurred in 



www.manaraa.com

 

 21 

state Si  normalized by the probability of that set to have occurred 

in any of the N states. 

 
           Σ t=1  s.t Ot= Vk

T  αt (I)[   γ tt'(i,j) / Σ P( d= t' – t | i) ] βt(i)  
           b'i(k)=  ___________________________________________________ 

                             Σ t=1  
T  αt (I)[   γ tt'(i,j) / Σ P( d= t' – t | I) ] βt(i)  

 

Using the above equations, the model parameters are calculated for 

every iteration. After the computations, we calculate compare the newly 

computed values to the previous values and record the change. If the 

change is below a defined threshold, we stop the training process. This is 

how an optimized model is designed for the given training data.  

The complexity of the Baum – Welch algorithm is O(N2T). This 

technique is far more complex than the supervised MLE training 

algorithm.  

 

 

     

 

 

 

 

 



www.manaraa.com

 

 22 

CHAPTER 3 

IMPLEMENTATIONAL DETAILS 

3.1 Changes from the Traditional HMM 

As in its theory, the implementation of a semi – Markov has a few major 

differences when compared to the traditional hidden markov model 

(HMM).  The implementation of a simple HMM takes into consideration 

the case of discrete input; meaning that every state of the model emits 

only a single observation. Also, since the model is discrete the duration of 

being in a single state 'i' was always one. The hidden semi – Markov 

model takes in continuous input and thus we have to make the following 

critical changes:  

 The model file should accommodate a sequence of characters for 

each state rather than a single emission symbol as before. 

 We should introduce a new parameter – the state duration 

probabilities, which store the probability of a state's duration as a 

discrete random variable [13].  

 There would be a significant change in the approach taken in the 

application of every algorithm in contrast to a regular HMM.  

To explain more precisely, since the states in HsMM take a 

continuous input, the transition from a state 'i' to itself takes place for a 

certain interval before the system transfers into another state 'j'. 

Therefore, the code written should accommodate this condition in its 



www.manaraa.com

 

 23 

entirety.  In the Figure 9, we can vividly see the concept [11]. 

                       

 

 

Figure 9: Duration of Each State in a HsMM 

  

The above figure has the set of states S = { Z1, Z2 ..., Zs }. Every state 

has a set of observations for certain duration, i.e. length. For example, Z1 

has the observation sequence of length D1 and the state Z2 has the 

sequence of length D2. A transition of state takes place only after it runs 

for its give duration. This paper will elaborate the complete 

implementation details of the structure of HsMM along with its 

associated algorithms in section 3.2.     

 

3.2 Algorithm Implementation Details 

The implementation code has been written entirely in C++ programming 

language. The implementation is divided into three files [12]. The first file 

being the Hmm.hpp is the header file where the definition of the 'Model' 

class is written.  The second file is the main.cpp, which as the name 

says is from where the execution of the program starts and runs. 



www.manaraa.com

 

 24 

Hmm.cpp is the program file containing the implementations of all the 

algorithms and procedures required for the complete functionality of the 

HsMM model. The project folder needs various other supporting files for 

its execution. These are:  

  Model Files: Model files are the input files given to the HsMM system 

that have the complete details of all the HsMM parameters. In our 

implementation, the model file has four parameter fields to read; the 

initial probabilities (denoted as InitPr), the output probabilities (denoted 

as OutputPr), the transitional probabilities (denoted as TransPr) and the 

state duration probabilities (denoted as StateDr). A sample model file is 

given below.  

          

SAMPLE MODEL FILE FOR HsMM 

2 

InitPr 2 

0 0.5 

1 0.5 

OutputPr 12 

0 ab 0.3 

0 bc 0.3 

0 cac 0.3 

0 dee 0.033 

0 ef e0.033 

0 fdf 0.033 

1 ab 0.033 

1 bcb 0.033 

1 ca 0.033 

1 de 0.3 



www.manaraa.com

 

 25 

1 eff 0.3 

1 fd 0.3 

TransPr 4 

0 0 0.5 

0 1 0.5 

1 0 0.5 

1 1 0.5 

StateDr 2 

0 0.2 0.2 0.2 0.2 0.2 

1 0.2 0.2 0.2 0.2 0.2 

 

Figure 10: Sample Model File for HsMM 

  

The model file first reads the number of states in the model (here it is 

2). Then the model file contains the fields for all the model parameters in 

an order. On careful observation, we will see that, the output 

probabilities for a state (either 0 or 1) is a sequence of characters and 

also the state duration probabilities are presented in the model file. 

 Training Files: The training files provide the data sets to train the 

model in order to optimize its parameters. We have implemented both 

the supervised training technique of Maximum Likelihood Estimation 

(MLE) and the unsupervised training mechanism of Baum – Welch. 

Consequently, we use a 'tagged training data' to train the model using 

MLE and an 'untagged data' when using the Baum – Welch.  In Figure 

11 we give an example tagged training sample. When using the Baum – 

Welch algorithm, we only give the training data without the transition 



www.manaraa.com

 

 26 

between states. Figure 12 shows a sample of training data when we are 

using the unsupervised training. 

  

TAGGED TRAINING DATA FOR HsMM 

abcd 0001 

abedd 00111 

ab 00 

bd 01 

aee 011 

aedf 0111 

faba 1000 

cabf 0110 

fffbc 11100 

bace 0001 

abaeb 00010 

eb 10 

ede 111 

ddfa 1110 

cacbe 00001 

fb 10 

 

Figure 11: Tagged Training Data Set for an HsMM 



www.manaraa.com

 

 27 

                                   UNTAGGED TRAINING DATA FOR HsMM 

abcd 0001 

abedd 00111 

ab 00 

bd 01 

aee 011 

aedf 0111 

faba 1000 

cabf 0110 

fffbc 11100 

bace 0001 

abaeb 00010 

eb 10 

ede 111 

 

Figure 12: Untagged Training Data Set for an HsMM 

 

 Result Files: These are the files that we write the result of a decode 

function (Viterbi) into. Hence, this file will contain each emitted symbol 

with its corresponding most probable state. 

 

Now we will proceed to give the full details of all the source code files, 

i.e hmm.hpp, main.cpp and hmm.cpp. We will first start off with the 

header file.  

 Hmm.hpp: This is the header file which is included in all other source 



www.manaraa.com

 

 28 

code files. In the header file we define the class for the HsMM model.   

This class of HsMM has the declarations of various methods which 

are used and also of the model parameters. The model parameters are 

declared as dynamic array vectors. Along with these, we also define 

various variables that are used in different algorithms as dynamic 

vectors. Below we show the declaration of the model parameters.  

    double *I; // initial state probability 

    double **A; // state transition probability 

    double **B; // output probability 

    double **Pd; // state duration probability   

 main.cpp:  As in any project module, main.cpp is the file where the 

execution of the program is handled. Our main function first declares an 

object for our Model, the model file and the sequence file. It determines 

the mode of execution depending on the options given by user. Our code 

gives the option for the user to work in three modes [12]. Those are: 

i) Decode option using -d: This enables the Viterbi algorithm. It is used 

by the user to find the best possible state sequence for a given set of 

observations. This mode requires a model file and a sequence file as 

inputs and generates a result file as its output.  

Example: % hmm -d -m modeldemo -s sampleseqdemo > sampletag 

In the above example, in addition to -d, -m is used to specify the 

compiler that a model file (modeldemo) will be given next. Similarly, -s 

indicates that the next  input is a sequence file (sampleseqdemo). The 



www.manaraa.com

 

 29 

output file (sampletag) is created using redirection. 

ii) Supervised training using -c: This makes use of the MLE algorithm 

and trains the HsMM model file with the given tagged sequence file.   

Example: hmm -c -n 4 -m modeldemo -s taggedseqdemo 

The above example makes use of taggedseqdemo to train the 

modeldemo file. The -n option specifies the number to states to be used 

in the model. In this case, it is four. 

iii) Unsupervised training using -t: The Baum – Welch algorithm is used 

to train the given input model file with untagged training data sets.  

Examples: hmm -t -n 2 -m modeldemounsup1 -s seqdemo2 

In the above example, we give the seqdemo2 as the untagged data to 

train the  modeldemounsup1 by making use of Baum – Welch 

procedure.  

We present a part of the main.cpp file where it can be seen how the 

program identifies which operation to undertake by comparing the 

options given.  

 if (!strncmp("-train",argv[i],2)) { 

        action = 1;                // Calls the Baum – Welch function  

     } else if (!strncmp("-decode",argv[i],2)) { 

        action = 2;             // Calls the Decode (Viterbi) function  

     } else if (!strncmp("-count",argv[i],2)) { 

        action = 3;           //  Calls the Count (MLE) function 

     } 



www.manaraa.com

 

 30 

 HMM.cpp: This is the file where all the source code related to the 

implementation of various algorithms is written.  Depending on the 

function calls made from the main.cpp, the program is executed. This 

program first has the duty of allocating the memory space for all the 

dynamic variables being used. Then it assigns the values given in the 

model file to its respective model parameters. It makes use of two 

constructors for the above operations. We use the concept of smoothing 

while loading the input values. This technique will be spoken about 

clearly in section 3.3. Once the model has been established, we can 

proceed on running algorithms on it.  

Different methods are called upon for different modes. Let us see in 

detail the execution of every mode. 

▪ DECODE MODE: The decode mode when called up, first takes up the 

model file and creates all the required variables. Then it calls up the 

decode function. As explained before we use the concept of a trellis 

diagram to make the code simpler. For this, we create a structure called 

'TrellisNode' which contains all the information related to a single Viterbi 

iteration [12]. The function first takes in the sequence file and reads its 

first symbol. It calculates the probability of generating the symbol 'c' from 

state 'i'. We make use of a 'while' loop for the remaining symbols. The 

code in this loop is used to grow the best path for each state. Let us 

assume that the sequence already processed is <c1, c2, ..., ck>. For every 

newly processed symbol c, we will update each of the trellis node i.e., 



www.manaraa.com

 

 31 

trellis[i], and it will hold the state transition path ending at state i that 

most likely forms the sequence <c1, ..., ck, c>. Similarly, trellis[i].pr has 

the updated log probability of generating the data, given the path. Below 

is a small part of the code that stores the probability of generating a 

sequence in 'thisPr' when the system follows the path followed in 

'trellis[j].path. 

 

      thisPr = trellis[j].pr + log10(A[j][i]) + log10(B[cIndex][i]) ;  

         for ( k=0; k<D; k++){ 

              thisPr += log10(Pd[i][k]);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

if (j==0 || thisPr > bestPr) {                          

bestFromState = j; 

        bestPr = thisPr; 

After generating all the possible paths for a given sequence of 

symbols, the next task is to pick the best path among them. Thus, we 

have to do a comparison between the generated state sequences to find 

out the most probable path.  Below  we give the relevant code that 

performs this operation.   

   vector<int> bestPath; 

         bestPath.clear(); 

         int bestTrellis; 

         double bestTrellisPr = 0; 

         for (int i = 0; i<N; i++ ){ 



www.manaraa.com

 

 32 

   if (i==0 || (trellis[i].pr > bestTrellisPr)) { 

   bestTrellis =i; 

   bestTrellisPr = trellis[i].pr;   

Finally, the best path is stored in the variable 'bestTrellis' and is 

written into the result file.  

▪ COUNT MODE:  The count mode is used for supervised training.  Similar 

to any mode, the model file is read in and the parameters are initialized. 

We use counters for each parameter in order to keep a count and then 

use the MLE formulas to calculate the new distributions. We first use the 

'ResetCounters()' function to set everything to zeros. Then, the method 

'count()' takes the given sequence file and proceeds to compute the model 

values. After reading the first symbol and the corresponding state, we 

update the starting state counter, i.e Icounter to reflect that the program 

read the state s as a starting state and appropriately make changes in 

the emission symbol counter; Bcounter for that symbol. 

   if (first) {  

          ICounter[s] +=1; 

           INorm += 1;   

          first = false; 

       }  

The above code checks if the symbol read is the first in the sequence. 

If so,  it updates the counters Icounter and INorm. The transition 

probabilities are calculated from the second symbol. We check if a 



www.manaraa.com

 

 33 

previous state exists for the current state ‟s‟ and if it does we update the 

transition counters (Acounter and ANorm) accordingly. The following 

code implements this functionality.  

    

   if (prevState>=0)  

   {  

     previous state. 

           ACounter[prevState][s] +=1; 

           ANorm[prevState] +=1; 

       }   

The given sequence file is read and the counts are calculated for every 

emitted symbol. 'UpdateParameter()' method is used to perform the MLE 

calculations on the accumulated counts. Consequently, for each of the 

'N' states this function calculates the model parameters. Using the 

'Save()' function we write back the updated model parameters onto the 

file [12].  

▪ TRAINING MODE: The user intends to use the Baum – Welch algorithm 

to train the model using untagged data sets. After taking in the model file 

and allocating the memory, we call the 'Train()' function with the given 

sequence file as input. Baum – Welch algorithm first randomly assigns 

some values for the model parameters using a random generator( 

RandomInit ). Let us call the iteration of the training process as an 

epoch. After every epoch, we check if our HsMM has reached a stable 



www.manaraa.com

 

 34 

configuration. We define the history of previous epochs in a variable 

'meanFit' and the variable 'currentFit' has the current parameters. If the 

difference between these two variables is negligible, we stop the training. 

The training process involves calculations of forward and backward 

variables among many other things. The paper clearly describes the 

implementation of these procedures and also identifies the changes made 

from the Traditional HMM.  

'ComputeAlpha()' method computes the forward variable for a given 

sequence. Since we are dealing with a Hidden semi-Markov model with 

continuous input the calculations involve increased complexity. We use 

the normalizing array 'eta[]' to compute the normalized values for alpha. 

The method starts off by calculating the alpha when time t=1. At every 

step of calculation, we need to consider an extra variable, the state 

duration probability which was unheard of in the regular HMM. Hence, 

we can see in the following piece of code that we perform calculations 

using all the three parameters; A, B and Pd.  

   for (i= 0; i<N; i++)  

   { 

         alpha[t][i] = 0;       

    for (j=0; j<N; j++)  

    {  

    alpha[t][i] +=alpha[t-1][j]*A[j][i] ; 

          } 



www.manaraa.com

 

 35 

          for (k=0;k<D;k++) 

          temp1[seq[t]][i]+=B[seq[t]][i]*Pd[i][k];  

         alpha[t][i]*=temp1[seq[t]][i];    

         eta[t] += alpha[t][i];  

       } 

We make use of a temporary dynamic variable 'temp1' to do the 

computations involving the duration variable (Pd).  Similarly, we proceed 

to calculate the backward variable using the method 'ComputeBeta()'. As 

in the case  of a HMM, at time 'T', meaning at the end of sequence the 

value is set to one. As we start moving down the sequence, the 

calculation now has to consider the  duration probabilities similar to the 

forward variable. We compute this by following the formulas given before 

in section 3.4.  

   for (i= 0; i<N; i++)  

   { 

          beta[t][i] = 0; 

         for (j=0; j<N; j++) { 

             temp2[t+1][j]=0; 

    for(k=0;k<D;k++) 

            temp2[t+1][j]+= Pd[j][k]*B[seq[t+1]][j]*beta[t+1][j]; 

            beta[t][i] +=A[i][j]*temp2[t+1][j] ;  

          } 

       } 



www.manaraa.com

 

 36 

A variable 'temp2' is used to make the computation easy. These 

temporary  values are de-allocated after their use. The next step is to 

calculate the value of gamma variable which as described in section 2.7 

helps in the calculations of the  model parameters. The 

'AccumulateCounts()' method ciphers these variables. The calculation of 

the gamma variable is similar to a traditional HMM. The code computes 

for every state and instances the product of forward and backward 

variables and normalizes them. While calculating the modified HsMM 

parameters, we make use of the variable 'countInc' which is the variable 

ξ t(i,j)  described in section 2.7.  This involves intricate computation as we 

show in the snippet below.  

  for (i=0; i<N; i++)  

  { 

         for (j=0; j<N; j++) { 

           temp3[t+1][j] =0; 

              for(k=0;k<D;k++) 

           temp3[t+1][j]+=Pd[j][k]*B[seq[t+1]][j]*beta[t+1][j];      

 countInc =(gamma[t][i]*A[i][j]*eta[t+1]*temp3[t+1][j] )/beta[t][i]; 

  ACounter[i][j] += countInc; 

  ANorm[i] += countInc; 

         }  

      } 

  The countInc in the above code is used to compute the transition 



www.manaraa.com

 

 37 

probability A[i][j] for a particular instant. Similarly we follow the formulas 

listed before to compute the remaining model parameters. We pass on 

these calculations to the 'UpdateParameter()' method similar to the MLE 

method. Finally, the improved model parameters are written back onto a 

model file using the 'Save()' method.   

 

This section clearly described the implementation changes of every 

algorithm and in the process gave out the differences in application of 

HsMM concepts with those of an HMM. The next section describes the 

concept of scaling and the various scaling mechanisms used in this 

implementation.   

 

3.3 Smoothing 

Smoothing is a technique used to flatten a given probability distribution 

function, so that every sequence could occur with some probability. The 

essence of any smoothing procedure involves redistribution of weights 

from high probability regions to the zero probability regions [17]. 

Smoothing is often required, especially when dealing with language 

models. For example, in a speech recognition problem, due to lack of a 

perfect data set this may represent certain words almost inconceivably. 

In such cases, we encounter zero probabilities which hamper the working 

of the model [18].  

In our Hidden semi-Markov model, we might have a few cases of zero 



www.manaraa.com

 

 38 

probabilities if we are given a sparse training data. This can cause a set 

of poor probability estimates, meaning there might be a set of unseen 

sequences accounting for zero emission probabilities. The simplest 

smoothing technique (also called, Laplace Smoothing) works by just 

assuming that each bigram appears exactly one more than it actually did 

[17]. Hence, the new probability for the bigram is calculated as,  

  

                       1+ C(wi-1, wi)              1+ C (wi-1, wi) 

     P(wi | wi-1) =     _______________     =   _______________ 
                              ∑(1+ C(wi-1, wi)          V + ∑ C(wi-1, wi) 

  

The implementation of HsMM makes use of two smoothing 

techniques. These are relatively simple when compared to the other 

complicated smoothing mechanisms. These are: Absolute Discounting 

and the usage of Logs. We will now describe them in detail.  

 Absolute Discounting: The idea of this is to reduce a fixed discount D 

from non-zero probabilities, and redistributing them among unobserved 

events [19]. This technique is simple and quite effective. After the model 

allocates memory for the model parameters, we use this technique while 

taking in the input values and initializing them to their respective 

variables.  

From the non-zero occurrences, we deduct a fixed amount D:   

            P

new

(x) = (C(x) - D) / C, if C(x) > 0 

Let there be M zero occurrences, hence we have a total deducted 



www.manaraa.com

 

 39 

amount of D(N-M), where N is the total number of event occurrences. We 

distribute this amount to the M zero instances as below, 

    Each zero occurrence will get a value: D(N-M)/ M.  

     P

new

(x) = D(N-M) / MC , if C(x) = 0 

The source code implements this technique after reading the 

parameter values from the input file. Thus, making sure the algorithms 

always work with non-zero probabilities. 

 Using Logarithms: We make sure that none of the algorithms processes 

zero input probabilities but we also have to make sure that, the 

procedures do not produce zero probabilities from their calculations. 

Since every algorithm involves multiple iterations, the program runs into 

cases where diminutive values of probabilities are multiplied more than 

once resulting in infinitesimally small values. To avoid this, we use the 

concept of logarithms which replaces the concept of multiplication with 

arithmetic summation.  

For example, in the 'Decode()' function we use logarithms to the base 

10 while calculating the probability of a trellis path occurring for the 

given emission sequence.  

  trellis[i].pr = log10(I[i]) + log10(B[cIndex][i]) + log10(Pd[i][1]);  

 This is employed in all the other algorithms, ensuring that we 

eliminate any case of zero probabilities occurring in the hidden semi-

Markov model. 



www.manaraa.com

 

 40 

This chapter clearly described the implementation techniques involved 

in modeling a Hidden semi-Markov model and its primary dissimilarity to 

the common HMM. The paper will now describe the working results of 

this model over a given set of input values.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 41 

CHAPTER 4 

RESULTS EVALUATION 

This chapter mainly discusses and illustrates the results obtained for the 

various algorithms after the implementation of the same in chapter 3. We 

will also evaluate the results obtained, compare them with the results of 

a traditional HMM and try to list out a few properties based on the 

observations.  

 

4.1 Results 

As described before, our implementation of Hidden semi-Markov model 

works in three modes. The mode for decoding the state sequence for a 

given set of observation symbols, a mode which allows the program to 

train the model file based on supervised data and the final mode which 

works using the Baum – Welch algorithm to train the system without 

tagged sequences.  

We will test our implementation by giving the specified inputs needed 

for every mode and comparing the proximity of the results obtained.  The 

implementation is written in C++ and hence runs on a simple g++ 

compiler with standard set of libraries. We use the command “gmake” to 

compile the code before running it.   

The below screen shot illustrates the directory of files that comprise 

our implementation and then proceeds to show the compilation of our 



www.manaraa.com

 

 42 

make file. This step creates an object file (named hmm) which will be 

used for running the program. Let us now proceed to describing the 

execution of every   mode and its corresponding results. 

 

 Decode – Viterbi Algorithm: 

The function ' decode ()' is called upon with the inputs being the 

model file and a sequence file. After running the program we will 

generate a result file which tags every symbol to its state [12]. The 

command issued for execution is: 

 

Figure 13: Screenshot of the Project Directory and its Compilation 



www.manaraa.com

 

 43 

“./hmm -d -m /home/nagendra/demo3/modeldemo -s 

/home/nagendra/demo3/seqdemo>/home/nagendra/demo3/sampletag” 

The above command takes in the model file (modeldemo) and the 

sequence file (seqdemo) and generates a result file named 'sampletag'. 

Below we give a screenshot showing the above mentioned input files.  

 

The model file used in this example gives high probability of 

occurrence to the symbols {a, b, c} for state '0' and the symbol set {d, e, f} 

for the state '1'. The model file also specifies the state duration and other 

 

Figure 14: Screenshot Showing the Input Files for Decode Algorithm 



www.manaraa.com

 

 44 

parameters required to complete as HsMM. On executing the decode 

command, we check the generated result file by using the 'more' 

command. Figure 15 illustrates these steps. It clearly elucidates that the 

'sampletag' contains the symbols {a, b, c} tagged to state '0' and {d, e, f} 

tagged to state '1' respectively. To make sure the implementation is 

correct; we tested it using another set of inputs. Figure 16 displays the 

'modeldemo2' model file and the 'seqdemo2' sequence file. We get 

accurate results by running our code on these inputs. The results are 

stated in Figure 17.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15: Execution of Decode Command and the Resulting File  



www.manaraa.com

 

 45 

 

 

Figure 16: Alternate Input Files for the Decode Command 

Figure 17: Execution and the Result File for Alternate Inputs 



www.manaraa.com

 

 46 

The above screen shot depicts the 'sampletag' file. On close 

examination, we can see that the decode function correctly assigns the 

state to its symbol in accordance to the given model file. The paper now 

proceeds to show the execution of the other two modes.  

 Count – Maximum Likelihood Estimation Algorithm: 

The „count ()' algorithm is used to estimate the parameters of the 

model by making use of the given tagged sequence of symbols. The input 

includes the number of states, a model file name and a tagged sequence 

file [12]. The following command is used to execute the count mode.  

 “./hmm -c -n 2 -m /home/nagendra/demo3/supmoddemo -s 

/home/nagendra/demo3/demotagseq “ 

 

Since we are using smoothing throughout our implementation, the 

generated model parameters are non-zero. Figure 18 displays the 

execution of the above command.  We can check the model file generated 

using the 'more' command. This is also shown in the figure below. 



www.manaraa.com

 

 47 

 

 
Figure 18: Execution of the Count Procedure 

 

The given sequence file is structured such that the maximum output 

probabilities are to be assigned for the string 'ab' in state '0' and for the 

string 'cd' in the HsMM state '1'. Figure 19 shows the state '0' with the 

output 'ab' having a probability of 0.86 and the remaining output 

sequences with a negligible probability.  



www.manaraa.com

 

 48 

 

 
Figure 19: Resulting Model File After Training Using Count 

 

To test the estimated model, we use a sequence file named 'testseq1' 

which has eight occurrences each of 'ab' and 'cd. If the implementation is 

right and the model generated using the MLE algorithm is accurate, the 

Viterbi algorithm will generate a result file mostly tagging 'ab' to state '0' 

and 'cd' to state „1‟. Figure 20 illustrates this fact.  The command given 

below is used to run the Viterbi algorithm on the 'testseq1' file.  

“./hmm -d -m /home/nagendra/demo3/supmoddemo -s 

/home/nagendra/demo3/testseq1” 



www.manaraa.com

 

 49 

 

 
Figure 20: Result File on Using Viterbi on the Trained Model Using Count 

  

Apart from a couple of exceptions, the model file perfectly tags the 

symbols to its states accordingly. The paper now proceeds to test the 

unsupervised training technique. 

 

 Train – Baum-Welch Algorithm: 

The third and the most complex of the three is the Baum – Welch 

algorithm. The 'train()' function is called upon in this mode. Unlike any of 

the other algorithms, this mode runs the training routine for an 

unspecified number of times. Until the model file has reached a state 

where no further improvement can be made, the training continues. The 

input includes the number of states, the model file and a raw sequence 



www.manaraa.com

 

 50 

file [12]. The following command is used to train the model file: 

 “./hmm -t -n 2 -m /home/nagendra/demo3/unsupmoddemo -s 

/home/nagendra/demo3/testseq1” 

In the above case, the function went on training for hundred and four 

times before reaching a state of a stable likelihood. Figure 21 shows the 

screen shot of the final epoch with its likelihood. 

 

Since we are using an unsupervised mechanism there is a possibility 

that the states might have their most likely emission symbols 

interchanged [12]. Similar to the Count mode, this model file is also 

tested on the same sequence file; 'testseq1'. The results of this operation 

 

Figure 21: The Final Likelihood Using Baum Welch Algorithm 



www.manaraa.com

 

 51 

are shown in Figure 22.  

  

As suspected before, the states do change their most favored output 

sequence of symbols. Nevertheless, the model is consistent and correctly 

assigns the states most of the times.  

We have described acutely the execution of the different modes of the 

implementation along with their corresponding outputs.  

 

4.2 Advantages Over the Traditional HMM 

All the modes of operation have one common distinct feature 

compared to a regular HMM and that being the fact that, not only the 

Hidden semi-Markov model work with a discrete output but it works 

Figure 22: Result File on the Trained Model Using Baum Welch 



www.manaraa.com

 

 52 

equally good with any combination of a continuous output sequence. 

This is a clear improvement over a traditional HMM. This results in the 

following advantages: 

 The concept of continuous chain of symbols extends the usability 

to many other domains. 

  The scalability of the model is increased and the dynamic 

processing of data is easier [20]. 

 The recognition phase implemented for an HsMM when 

implemented at a segment level shows comparatively better results 

[5]. 

 The use of Gaussian distribution for the symbol probability 

distribution at the state level is a defining aspect of feature 

selection [5]. 

 In domains such as handwriting recognition, it is always a good 

idea to implement a variable duration model for the Hidden markov 

mode [5]. There is a given built-in dubiousness involved with the 

handwritten characters.  

Hence, because of the above benefits, HsMM is being exploited 

extensively over the past decade.   

  

 

 

 



www.manaraa.com

 

 53 

CHAPTER 5 

CONCLUSION AND FURTURE SCOPE 

This thesis “Implementation of Hidden Semi-Markov Models” studies the 

technique of continuous markov chain.  We have implemented the 

comprehensive HsMM model comprising of all the algorithms needed to 

solve its three basic problems.  

We discussed the background of the semi-Markov model where the 

advantages over the traditional HMM were given and the general 

structure along with its issues was explained in Chapter 1. Chapter 2 

put forth the details of the modified model parameters along with the 

theoretical changes made to the commonly used procedures used for 

problem solving. All the implementations on the algorithms along with 

the smoothing mechanisms employed were explained in Chapter 3. All 

the results were presented clearly and compared to the common HMM in 

Chapter 4. 

The thesis mainly dealt with comparing the semi-Markov hidden 

model with the regular hidden Markov model.  The theoretical differences 

were laid out and analyzed. The paper also describes the advantages of 

using the continuous model against the discrete model and to support it 

gives the list of active applications in this domain.  

From the results obtained in Chapter 4, we can evaluate that this 

model of working is advantageous in many ways. The additional features 



www.manaraa.com

 

 54 

offered by the HsMM go a long way in real time applications providing a 

certain edge over other methodologies. Though HsMM is expedient in 

many cases, it does have a few disadvantages of its own. Those are 

mainly related to the computational complexities.    

Continuous Markov Models is an active field of study in the area of 

information extraction and machine learning. In future, this study can be 

extended by implementing this model on larger and suitable data sets. A 

large variety of tools can be modeled keeping this as the basic structure. 

Some of the easier applications that can be developed are an acronym 

finder or a handwriting recognition system among many others. 

   

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 55 

BIBLOGRAPHY 

1. Shun-Zheng Yu, 'Hidden semi-Markov models', Department of 

Electronics and Communication Engineering, Sun Yat-Sen 

University, Guangzhou 510275, PR China, 2009 

2. Jan Bulla, 'Application of Hidden Markov Models and Hidden 

Semi-Markov Models to Financial Time Series', Dissertation 

Presented for the Degree of Doctor of Philosophy at the Georg-

August-University of G  ottingen, 2006 

 http://mpra.ub.uni-muenchen.de/7675 

3. Ming Dong, David He, 'Hidden semi-Markov model-based 

methodology for multi-sensor equipment health diagnosis and 

prognosis', European Journal of Operational Research, 2006.  

4. Kevin P. Murphy, 'Hidden semi-Markov models (HSMMs)', 2002   

 www.ai.mit.edu/∼murphyk 

5. Mou-Yen Chen, Amlan Kundu, Sargur N. Srihari, 'Variable 

Duration Hidden MarkovModel and Morphological Segmentation 

for Handwritten Word Recognition', IEEE TRANSACTIONS ON 

IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER , 1995 

 ieeexplore.ieee.org/iel2/916/7982/00341066.pdf 

6. ChengXiang Zhai, 'A Brief Note on the Hidden Markov Models 

(HMMs)', Department of Computer Science University of Illinois at 

Urbana-Champaign, 2003  

 http://sifaka.cs.uiuc.edu/course/498cxz05f/hmm.pdf 

http://mpra.ub.uni-muenchen.de/7675
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2942&rep=rep1&type=pdf
http://ieeexplore.ieee.org/ielx2/916/7982/00341066.pdf?tp=&arnumber=341066&isnumber=7982
http://sifaka.cs.uiuc.edu/course/498cxz05f/hmm.pdf


www.manaraa.com

 

 56 

7. Lawrence R. Rabiner, 'A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition', Pages: 257-286, 

Proceedings of the IEEE, 1989 

 http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf 

8. Barbara Resch, 'Hidden Markov Models,A Tutorial for the Course 

Computational Intelligence', Signal Processing and Speech 

Communication Laboratory, Institute for Theoretical Computer 

Science, Institute for Theoretical Computer Science, 2009 

 http://www.igi.tugraz.at/lehre/CI 

9. Robin, 'BAUM WELCH ALGORITHM',NATURAL LANGUAGE 

PROCESSING ARTICLES ON NATURAL LANGUGE PROCESSING, 

2009 

http://language.worldofcomputing.net/pos-tagging/baum-welch-

algorithm.html# 

10. Rose Hoberman, Dannie Durand, 'HMM Lecture Notes', 

Computational Genomics and Molecular Biology, Carnegie Mellon 

University, 2006 

http://www.cs.cmu.edu/~durand/03-711/2006/Lectures/hmm-

bw.pdf 

11. Matthew J. Johnson, Alan S. Willsky, 'The Hierarchical Dirichlet 

Process Hidden Semi-Markov Model', 26th Conference on 

Uncertainty in Artificial Intelligence (UAI 2010), Avalon, California, 

2010  

http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
http://www.igi.tugraz.at/lehre/CI
http://language.worldofcomputing.net/pos-tagging/baum-welch-algorithm.html
http://language.worldofcomputing.net/pos-tagging/baum-welch-algorithm.html
http://www.cs.cmu.edu/~durand/03-711/2006/Lectures/hmm-bw.pdf
http://www.cs.cmu.edu/~durand/03-711/2006/Lectures/hmm-bw.pdf


www.manaraa.com

 

 57 

         http://www.mit.edu/~mattjj/uai2010 

12.  ChengXiang Zhai, 'Assignment #5: Hidden Markov Models 

for Information Extraction', Department of Computer 

Science University of Illinois at Urbana-Champaign, 2003 

http://sifaka.cs.uiuc.edu/course/498cxz04f/assign5.ht

ml 

13. Shun-Zheng, YuHisashi Kobayashi, 'An Efficient 

Forward–Backward Algorithm for an Explicit-Duration 

Hidden Markov Model', Pages: 11-14, IEEE SIGNAL PROCESSING 

LETTERS, VOL. 10, NO. 1, 2003. 

          http://sist.sysu.edu.cn/~syu/Publications/IEEE_SPL03.pdf 

14. Clayton Scott, Robert Nowak, 'Maximum Likelihood Estimation', 

2004 

 http://cnx.org/content/m11446/latest/ 

15. Jae Myung, 'Tutorial on maximum likelihood estimation', Journal 

of Mathematical Psychology, 2002 

 citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.671 

16. Kazem Taghva, Jeffrey Coombs, Ray Pereda, Thomas Nartker, 

'Address Extraction Using Hidden Markov Models', Information 

Science Research Institute University of Nevada, Las Vegas, 2005 

 http://cat.inist.fr/?aModele=afficheN&cpsidt=17027918 

17. Joseph Picone, 'LECTURE 33: SMOOTHING N-GRAM LANGUAGE 

MODELS', Insititute of Signal and Image Processing, Temple 

http://www.mit.edu/~mattjj/uai2010
http://sifaka.cs.uiuc.edu/course/498cxz04f/assign5.html
http://sifaka.cs.uiuc.edu/course/498cxz04f/assign5.html
http://sist.sysu.edu.cn/~syu/Publications/IEEE_SPL03.pdf
http://cnx.org/content/m11446/latest
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.671
http://cat.inist.fr/images/loupe.png


www.manaraa.com

 

 58 

University, 2009 

http://www.isip.piconepress.com/publications/courses/msstate/e

ce_8463/lectures. 

18. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, 

'Introduction to Information Retrieval' Cambridge University Pres, 

2008 

http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf 

19. Mengqiu Wang, 'A Presentation on Smoothing', 2010 

http://www.stanford.edu/class/cs224n/.../cs224n-section1-

smoothing-040910.ppt 

20. Mohammed Waleed Kadous, 'Auslan Sign Recognition' PhD 

dissertation, School of Computer Science and Engineering, 

University of New South Wales, 1998 

 http://www.cse.unsw.edu.au/~waleed/phd/html/node35.html 

 

 

       

   

 

 

    

 

http://www.isip.piconepress.com/publications/courses/msstate/ece_8463/lectures/current
http://www.isip.piconepress.com/publications/courses/msstate/ece_8463/lectures/current
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
http://www.stanford.edu/class/cs224n/.../cs224n-section1-smoothing-040910.ppt
http://www.stanford.edu/class/cs224n/.../cs224n-section1-smoothing-040910.ppt
http://www.cse.unsw.edu.au/~waleed/phd/html/node35.html


www.manaraa.com

 

 59 

VITA 

 

Graduate College 

University of Nevada, Las Vegas 

Nagendra Abhinav Dasu 

Degrees: 

Bachelor of Technology in Computer Science, 2009 
Jawaharlal Nehru Technological University, India 

 

Thesis Title: Implementation of Hidden Semi-Markov Models 
 

Thesis Examination Committee: 
Chairperson, Dr. Kazem Taghva, Ph.D. 
Committee Member, Dr. Ajoy K. Datta, Ph.D. 

Committee Member, Dr. Laxmi P. Gewali, Ph.D 
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 


	Implementation of hidden semi-Markov models
	Repository Citation

	ABSTRACT

